
191

PROGRAMMING IN THE MODEL
A NEW SCRIPTING INTERFACE FOR
PARAMETRIC CAD SYSTEMS

Maryam M. Maleki
Robert F. Woodbury
School of Interactive Arts and
Technology, Simon Fraser University

ABSTRACT

Programming, often called scripting, has become a key feature in most CAD systems and an

equally key area of expertise in CAD. However, programming surrenders many of the benefits

of direct manipulation and introduces notational elements that are cognitively distant from the

designs being created. In addition, it creates barriers to use and is often perceived as being too

difficult to apply. We introduce Programming In the Model (PIM) through a prototype, implement-

ing live side-by-side views, multi-view brushing and highlighting, live scripting, auto-translating

from modeling operations to script and localized relational information within model windows.

A qualitative user study confirms PIM’s features and raises issues for future development. A key

result is the need for multi-directional extreme liveness, that is, maintaining consistency of action

across views at the smallest possible scale. We argue that PIM principles are applicable in textual

and visual programming alike.

Localized representation of dependencies
in the model view in PIM

6

ACADIA 2013 ADAPTIVE ARCHITECTUREINFORMATION 192

1 INTRODUCTION

Computer programming can improve designers’ efficiency by

allowing them to program iterative operations (Burry 1997: 493),

making modules for future use (Woodbury 2010: 30), and helping

others by sharing code (Gantt and Nardi 1992). It also helps them

with their design task by giving them freedom from the limitations

of the interface (Streich 1992: 402) and allowing them to explore

unconventional and more complex forms (Aish 2003: 340). CAD

developers try to perfect their software to meet designers’ needs,

but at some point designers will encounter the software’s limits

and want to exceed them, such that their creativity and designs are

not limited or determined by the system. Aish (2003: 339) argues

that one of the key requirements for exploratory design is having

geometric freedom, which can be achieved by using computer

programming to access the hidden functions in the computational

tool that are not usually exposed in the GUI. To do so, designers

must have necessary programming skills. This is especially true in

using parametric CAD systems when designers must think about

the underlying data structure of the geometric model and define

the relationships between geometric components (Woodbury 2010:

23). These domain experts who write code become end-user pro-

grammers with varying levels of programming skill (Nardi 1993).

While designers are proficient with the two-dimensional or three-di-

mensional model itself, most of them are not as comfortable with

programming/scripting environments. Like other end-user pro-

grammers, they face a challenge when they move away from their

domain and enter the computer programming space. Their goal

is not to become professional programmers or to create the most

efficient, reusable code, but to write code to support themselves in

the task in hand (Ko et al. 2011). Thus, they think twice before starting

to use a new tool by weighing the time and effort that learning the

tool takes against the benefits it brings to their work (Blackwell 2002).

Since the scripting interface and its notation are very different from

the CAD modeling interface, this creates a fear of code among

designers that prevents them from learning scripting and benefiting

from its capabilities in their design process.

In this research we address this issue in parametric CAD systems and

suggest several principles and features in the context of a prototype

we call PIM, short for Programming In the Model. We first explain the

cognitive issues of programming and how we address them in PIM.

Then we describe PIM features and present the results of our user

study. Finally, we discuss our findings and future directions.

2 THE COGNITIVE BASIS FOR PIM

2.1 PROGRAMMING IN CAD
Blackwell (2002: 5) summarizes the primary cognitive features of

programming tasks as “a) loss of the benefits of direct manipula-

tion and b) introduction of notational elements to represent abstrac-

tion.” Let us see what these mean for modeling tasks in CAD:

LOSS OF DIRECT MANIPULATION
In CAD, direct manipulation is the primary method of interaction

with the model. CAD users click on geometric objects such as

points and lines to edit them, click on a location in the model

space to specify coordinates, and click and drag parts of the

model to move or scale them. Programming in CAD is usually

done in a scripting window that is separate from the model and

in most cases temporarily blocks access to the model until the

script window is closed. Designers must focus their attention on a

new window and interact with programming elements instead of

the model that is the subject of their design. As a result, they lose

the benefits of direct manipulation, including immediate visual

feedback on their actions (Shneiderman 1983: 59) and the sense of

directness between their thoughts and the actions of the system

(Hutchins, Hollan, and Norman 1985: 317).

PIM’S APPROACH
By looking closer at scripting in CAD, we see that it usually com-

prises the same actions as modeling tasks, such as creating new

objects, editing existing objects and modifying their relation-

ships. We aim for an environment that gives users the option to

continue using the same modeling tools and to manipulate the

model directly during scripting.

INTRODUCTION OF A NEW NOTATION
Modeling notation (and it is a notation, just a graphical one) com-

prises line, curve, surface and solid components; move, rotate,

copy and scale operations; dimensions and materials. The script-

ing language, however, is a totally different one. Depending on the

system, functions, loops and conditionals, classes and instances,

arguments, variables and types, and commas, semicolons and

brackets are used to write a program.

PIM’S APPROACH

We propose an environment that allows users to employ regular

modeling and GUI notations during programming, then translates

their modeling actions into the programming notation and vice

versa. This gradual generation of the code is a learning tool for

novice end-user programmers. More experienced end-users may

choose to let the system generate simple pieces of code, but

write the more complex ones in the script.

2.2 LEARNING BARRIERS

Dertouzos (1992) and later (Myers, Smith, and Horn 1992) introduce

the concept of a “gentle slope system” (Figure 1). To custom-

ize such systems, users only need to learn a small number of

features. In other words, they climb a small step to move for-

ward. Some systems require a lot of learning before users can

accomplish a task. Often, users hit a wall that they need to climb

before they can continue. As shown in Figure 1, spreadsheets are

relatively easy to use, up until the point when users open VBA

193

left: Gentle slope systems.

(Visual Basic for Applications) to write a piece of code. That is when they face a steep learning

curve because of the new programming language and lack of direct access to the spreadsheet

interface.

PIM’S APPROACH

The goal of Programming In the Model is to create a more gentle slope system by breaking the

barrier between modeling and scripting into small, able-to-be-reordered steps. Bearing in mind

that PIM is not a new programming language, we do not claim to reach the perfect shallow curve

in Figure 1 (labeled as Goal). PIM operates on existing CAD systems and their scripting languages.

We accept the level of difficulty of these scripting languages and only claim to break the difficulty

curve into smaller steps that make it easier for end-user programmers to learn and use these

languages (Figure 2).

2.3 FEAR OF CODE

According to Blackwell’s (2002) attention investment model, users weigh the perceived costs and

risks against the immediate rewards before attempting an action. If writing a piece of code seems

too difficult or time consuming, end-user programmers may choose to manually perform a repeti-

tive task and move on, instead of investing attention in programming.

PIM’S APPROACH

We hope to lower the perceived cost/benefit ratio of scripting in PIM compared to traditional

scripting languages. PIM aims to break the fear of code in order to encourage designers to use

small pieces of code more frequently, therefore making it more likely for programming to become

a tool in their design process.

3 PROGRAMMING IN THE MODEL (PIM)

In this section we introduce a number of ideas and recommendations for a scripting interface in

CAD with a more gentle slope that reduces the fear of code in designers and helps them over-

come some of the barriers that prevent them from using programming in their work. We describe

these ideas using a prototype that we call PIM, which includes a limited number of geometric

right: PIM’s goal is to break down the
learning step between modeling and
scripting to create a gentle slope system.

1

2

PROGRAMMING IN THE MODELMALEKI, WOODBURY

INFORMATION ACADIA 2013 ADAPTIVE ARCHITECTURE 194

objects and an interface that comprises a model window, a

dependency graph (node-link) diagram, and a script window. The

current implementation of PIM, showing only a subset of our

ideas together with a video demo, presents a complete picture

of PIM features. We created PIM as a platform to implement

and test these ideas, not as a new CAD system. Our hope is that

these ideas be adapted and applied to existing CAD systems.

SIDE-BY-SIDE AND LIVE WINDOWS

In most CAD systems, an open script window blocks the model

and freezes it, meaning that users cannot interact with the model

or graph until they close the script window. PIM shows all repre-

sentations of the design side-by-side, including the model view,

the dependency graph, and the script window. They are all con-

current and interactive, so designers can access the model and

the graph during scripting (Figure 3).

HIGHLIGHTING TO NAVIGATE THE MODEL, THE GRAPH,
AND THE SCRIPT

To help navigate through these representations, PIM offers brush-

ing and highlighting of the data in the script, graph and model.

When users hover the mouse over an object in any of these

windows, all references to that object are brought into focus and

highlighted in the other windows (Figure 3).

LIVE SCRIPTING FOR IMMEDIATE FEEDBACK

If the model is blocked and does not update during scripting,

designers have to work “blindly” in the script without seeing the

design in the model until they compile (or run) the script. One of

the most important features of PIM is to give immediate feedback

to designers. When users edit an object in the script window,

the change is immediately reflected in the model and the graph,

so that they can see and evaluate the effect of that action on

the model right away without having to leave the script window

(Figure 4). Having access to the model and graph during scripting

also means that users do not have to remember the name of

the object that they want to refer to in the script, but can sim-

ply point to it in the model or graph and its name is inserted in

the script where needed.

AUTO-TRANSLATION OF MODELING ACTIONS INTO
SCRIPT

Immediate feedback goes both ways. To create an object, de-

signers can use the toolbars in the model view, and the action is

immediately reflected in the script (Figure 4). For designers who

are not yet familiar with scripting, the real-time script generation

offers a learning opportunity: by following the generated script,

they can learn the syntax for the action they just performed.

These features affect how they write functions or any block of

code in PIM. Instead of writing the function in an abstract mode

in the script window without seeing what it does until later when

PIM’s model, graph, and script windows are live and update automatically
with brushing and highlighting for navigation.

Liveness in PIM means that any action in any window is immediately reflected in
the other two.

3

4

they make a function call, designers can continue modeling as

usual and PIM will wrap the work into a function. At any time

during this process designers can choose to work in the script,

the model or the graph, and the other two representations

are updated in realtime.

LOCALIZED INFORMATION WITHIN THE MODEL WINDOW

These features help designers when it is necessary to work in the

script, but switching back and forth between these windows cre-

ates a cognitive load for designers and takes focus away from the

model where the design work largely takes place. PIM’s approach

is to give users access to all the information about the object in

the model view. For each object, there exists an expandable edit

toolbar that presents different types of data about it, including

inputs, replication (Aish and Woodbury 2005) and an editable copy

of the script that creates that object (Figure 5). Thus, users have

195

the option to perform as much of the task as possible in any

one of these representations.

In most CAD systems, to explore the relationships between an

object and the rest of the model, designers have to highlight

the object and find it in the graph, follow the links and find what

object(s) are upstream or downstream and then highlight and

find those objects back in the model. As a result, there is a lot

of switching between windows to figure out the dependencies.

PIM gives designers the option to see upstream and downstream

dependencies in the model view. These links directly connect

model objects, not the nodes that represent those objects in the

graph, so it is easy to find out what object is upstream or down-

stream of an object in the model (Figure 6). The graph window still

exists and helps to get a sense of the whole dependency struc-

ture or to do more complex tasks.

4 EVALUATION

We conducted a qualitative user study to evaluate Programming

In the Model. The participants came from the field of architec-

tural design in academia and industry. All twelve participants had

experience with parametric modeling and expertise in scripting,

ranging from novice to expert. We used the prototype and a video

demo to demonstrate PIM features to the participants. They used

the prototype to perform a number of modeling and scripting

tasks. The tasks and the discussions were recorded and analyzed,

using an open coding method. We do not describe the study and

analysis in detail here due to space limitations, but briefly present

some of our findings.

As we expected, the live script window was well received by the

participants. They referred to the conventional scripting environ-

ment as a black box that is unknown to designers with a language

close to “nuclear physics” that is hard to translate into a familiar

language. The fact that the script window is always open in PIM

and dynamically updates with every modeling action reduces the

mystery behind the scripting language and shows how code and

modeling relate. Participants thus confirmed our vision of live pro-

gramming and wanted even more.

They expect the interface to be as live as it can possibly be and

reflect the smallest modeling actions in the script and vice versa.

For example, it is not enough to show the syntax that creates a

vector after users are finished making the vector in the model.

They need to see all the steps of creating a vector translated into

code, such as initiating the vector, naming, providing inputs, and

so on. Such liveness must work in all directions. For instance,

creating a vector in the script produces a visual vector as soon as

sufficient information is available. We coin the term “extreme live-

ness” as both a design goal and a descriptor of such interfaces,

which is crucial in making effective mental connections between

the code and the model.
5 Localized information appears in the model next to the object and

includes name, type, inputs, script, and dependencies.

PROGRAMMING IN THE MODELMALEKI, WOODBURY

(b) Expanded edit toolbar

(c) Script tab in the model

(a) Edit toolbar

INFORMATION ACADIA 2013 ADAPTIVE ARCHITECTURE 196

Another barrier that resonated with the participants was navigat-

ing through the information presented in the script and graph

and connecting it with the model that they were designing.

Highlighting was used widely by the participants to search and

navigate within each window and also across different windows,

especially to locate the object of interest in the script when it was

known to them in the model. They also used highlighting to make

sense of the script by quickly hovering the mouse over the syntax

and finding the object that it represented in the model. This action

immediately turned the abstract code into a concrete object that

was more meaningful in the context of the modeling task.

Localization of information (including code and dependencies)

in the model received mixed feedback from the participants.

Some found the script accompanying the object in the model

extremely useful by sorting the data in the two-dimensional and

three-dimensional spaces. They preferred to use this version

of the script over the script window to edit individual objects.

They stated that the script tab in the model further reduces the

“distance” between the model and the code. Other participants

did not notice any value in the script tab. The idea of localized

dependencies received positive feedback across the board, but

the representation of the dependency data failed to achieve the

desired effect. We chose a node-link representation with directed

links connecting the upstream objects to downstream objects in

the model. During the tasks, participants found it hard to follow

the links and find them within the 2D model and most of them

failed to identify one or more dependencies. We received several

suggestions from the participants for improving or changing the

way we represent dependencies in the model. These need to be

investigated in the future.

Several participants raised the issue of complexity and asked

whether PIM would be able to handle complex models. The prob-

lem has three sides. The first is performance: can our machines

handle live coding with complex three-dimensional models? The

answer is irrelevant. They may or may not be able to handle it

now, but soon they will be, as they are improving everyday. That

should not stop us from designing better interfaces and elimi-

nating barriers. The technology will catch up. The second part

of the question of complexity is in regards to data visualization

and interaction: is it possible to represent all of this data over a

complex three-dimensional model without compromising clarity

of the model or the data? The issue of scaling is endemic in visual

programming languages: they do not scale up well. We were

aware of this challenge when we started this project and we are

constantly looking for better and more scalable ways to represent

data in PIM. Our strategy of localization is a partial solution:

Localized representation of dependencies in the model view in PIM.6

197

by having only the current data of interest displayed within the

model, we reduce immediate visual complexity, though at a cost

of potentially losing larger programming context. The third aspect

is abstraction, for which textual programming has established and

well-understood conventions. In contrast, visual programming

interfaces generally have much weaker and less developed tools

for working with abstraction. By making links between modeling

and programming more direct, for instance with edit toolbars in

the model, PIM attempts to better connect the concrete world

of modeling with the necessarily abstract world of programming.

These are only early and partial solutions: complexity will be a

challenge for PIM as it is for all visual programming systems.

5 DISCUSSION AND CONCLUSION

Multi-view, multi-level interaction is well-established in CAD (Aish

and Woodbury 2005). Other fields point out directions for improve-

ment. The notion of live coding is beginning to find its way into

programming applications (Live Programming Workshop 2013; Burnett,

Atwood Jr, and Welch 1998); see, for instance, Khan Academy’s

(2012) programming environment based on processing for teach-

ing programming with graphics, and the Experimental Media

Research Group’s (2013) visual programming system NodeBox.

Both environments have side-by-side windows, one for the code

and one for the graphical output. The liveness of the environ-

ments means that the result of every line of code is immediately

rendered in the output window without the need for users to run

or compile the code. Autodesk’s DesignScript employs the same

principle with the resulting model appearing in the AutoCAD

window. In all of these systems, the liveness is uni-directional

(code to model), whereas PIM offers a multi-directional liveness

between code, model and graph. Any action in any window is

immediately reflected in the other windows. By having extreme

liveness in all directions we support users in transfering their mod-

eling knowledge and skills to programming.

Victor (2012) takes this concept further and suggests that liveness

alone is not enough. He believes that designers need complete

transparency in the code, from what everything means, to the

state of variables and the flow of the program. They also need

to think in concrete terms, with something that is specific and

completely understood, before it is generalized into functions

and classes. We use his advice in PIM and make the system fully

transparent by highlighting everything across notations. That

means lines of code, arguments and variables are highlighted in

any notation they appear in when users hovers the mouse over

their representation in any other windows.

PIM goes even further, in being able to overlay fragments of

another representation on the representation being edited, for

instance, graph or script fragments localized in the model. Such

overlays mean that a designer can compose the interface specif-

ically to the task at hand. Perhaps the strongest result from the

user study is that participants both confirmed PIM’s liveness and

wanted to push it further still. It seems then that both the liter-

ature and our own findings identify a sound direction for future

research towards extremely live, multi-representation and highly

composable interfaces for parametric modeling.

When we talk about programming or scripting in CAD, the

notation may be a textual syntax such as VBA in Solidworks or

GCScript in GenerativeComponents, or a visual programming

notation such as Rhino’s Grasshopper. Visual programming has

had some success in breaking programming barriers, particularly

because of how its visual notation speaks to CAD users (mostly

architects and engineers) with strong visual and spatial skills. It

also allows a more direct manipulation of the program (Burnett

1999). Although visual programming appears to be easier to use

and understand for designers, it suffers from some of the same

problems of textual programming, including the different notation

it uses (node-link) compared to the modeling notation, its lack of

direct manipulation of the model (direct manipulation only hap-

pens on the nodes and links) and low level of liveness (the delay

between user’s action and its effect in the model.) PIM principles

are applicable to textual and visual programming alike.

PROGRAMMING IN THE MODELMALEKI, WOODBURY

INFORMATION ACADIA 2013 ADAPTIVE ARCHITECTURE 198

ACKNOWLEDGEMENTS
This research is partially supported by the Canadian NSERC

Postgraduate Scholarships, Discovery Grant and Collaborative

Research and Development programs; Bentley Systems Inc. and

the Graphics, Animation and New Media (GRAND) Network of

Centres of Excellence.

WORKS CITED
Aish, Robert. 2003. “Extensible Computational Design Tools for
Exploratory Architecture.” In Architecture in the Digital Age : Design and
Manufacturing. New York, NY: Spon Press.

Aish, Robert, and Robert Woodbury. 2005. “Multi-level Interaction
in Parametric Design.” In SmartGraphics, 5th Intl. Symp., SG2005,
ed. A. Butz, B. Fisher, A. Krüger, and P. Oliver, 151–162. LNCS 3638.
Frauenwörth Cloister, Germany: Springer.

Blackwell, A. F. 2002. “First Steps in Programming: a Rationale for
Attention Investment Models.” In Proceedings IEEE 2002 Symposia
on Human Centric Computing Languages and Environments, 2–10.
Arlington, VA, USA.

Burnett, Margaret M, John W Atwood Jr, and Zachary T Welch. 1998.
“Implementing Level 4 Liveness in Declarative Visual Programming
Languages.” In 1998 IEEE Symposium on Visual Languages, 126–133.

Burnett, Margaret M. 1999. “Visual Programming.” In Encyclopedia of
Electrical and Electronics Engineering. New York: John WIley & Sons Inc.

Burry, Mark. 1997. “Narrowing the Gap Between CAAD and Computer
Programming: A Re-Examination of the Relationship Between
Architects as Computer-Based Designers and Software Engineers,
Authors of the CAAD Environment.” In The Second Conference on
Computer Aided Architectural Design Research in Asia, 491–498. Taiwan.

Dertouzos, Michael. 1992. ISAT Summer Study: Gentle Slope
Systems; Making Computers Easier to Use.

Experimental Media Research Group. 2013. NodeBox. Sint Lucas
School of Arts of the Karel de Grote-Hogeschool, Antwerpen
(Belgium). http://www.nodebox.net.

Gantt, Michelle, and Bonnie A. Nardi. 1992. “Gardeners and Gurus:
Patterns of Cooperation Among CAD Users.” In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, 107–117.
CHI ’92. Monterey, California, United States: ACM.

Hutchins, Edwin L., James D. Hollan, and Donald A. Norman. 1985.
“Direct Manipulation Interfaces.” Human-Computer Interaction 1 (4): 311.

KhanAcademy. 2012. Khan Academy Computer Science. http://www.
khanacademy.org/cs/new.

Ko, Andrew J., Robin Abraham, Laura Beckwith, Alan Blackwell,
Margaret Burnett, Martin Erwig, Chris Scaffidi, et al. 2011. “The State
of the Art in End-user Software Engineering.” ACM Comput. Surv. 43
(3) (April): 21:1–21:44.

Live Programming Workshop. 2013. A History of Live Programming.
http://liveprogramming.github.io/liveblog/2013/01/13/a-history-of-live-
programming.html.

Myers, Brad A., David Canfield Smith, and Bruce Horn. 1992. “Report of the
End-User Programming Working Group.” In Languages for Developing User
Interfaces, ed. Brad A. Myers, 343–366. Natick, MA, USA: A. K. Peters, Ltd.

MARYAM MALEKI holds a Master of Science in

Architecture from Shahid Beheshti University and is currently

a Ph.D. candidate at School of Interactive Arts and Technology

(SIAT), Simon Fraser University, Canada. She was awarded a three-

year postgraduate scholarship from the National Science and

Engineering Research Council of Canada (NSERC) for her work

on end-user programming in CAD. She also received the Young

CAADRIA Award in 2010.

ROBERT WOODBURY holds a BArch from Carleton

(Silver Medal) and MSc and PhD from CMU. He was appointed

in Architecture and the Engineering Design Research Center at

CMU from 1982-1993, at Adelaide from 1993-2001 and is now at

Simon Fraser. He was founding Chair of the Graduate Program

in the School of Interactive Arts and Technology at SFU and of

the Canadian Design Research Network. He is Director, Art and

Design, of the Graphics, Animation and New Media Canada

Network of Centres of Excellence. He has been awarded the

ACADIA Award for Innovative Research and the CAADRIA Tee

Sasada Award. He is a former Olympian in sailing.

Nardi, Bonnie A. 1993. A Small Matter of Programming: Perspectives
on End User Computing. Cambridge, MA: MIT Press.

Shneiderman, B. 1983. “Direct Manipulation: A Step Beyond
Programming Languages.” Computer 16 (8): 57–69.

Streich, Bernd. 1992. “Should We Integrate Programming Knowledge
into the Architect’s CAAD-Education? Basic Considerations and
Experiences from Kaiserslautern.” In Proceedings of the 1992 eCAADe
Conference: CAAD Instruction: The New Teaching of an Architect,
399–406. Barcelona.

Victor, Bret. 2012. Learnable Programming. http://worrydream.com/#!/
LearnableProgramming.

Woodbury, Robert F. 2010. Elements of Parametric Design. Taylor and
Francis.

